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Abstract

Based on classical but apparently little known results due to Razzaboni, the integrable nature of
Bertrand curves and their geodesic embedding in surfaces is discussed in the context of modern
soliton theory. The existence of parallel Razzaboni surfaces which constitute the surface analogues
of the classical offset Bertrand mates is recorded. It is shown that the natural geodesic coordinate
systems on Razzaboni surfaces and their mates are related by a reciprocal transformation. The
geodesic coordinate system on the Razzaboni transform generated by a Backlund transformation is
given explicitly in terms of Razzaboni’s pseudopotential obeying a compatible Frobenius system.
The Razzaboni transformation and the duality transformation which links a Razzaboni surface and
its mate are proven to commute. A canonical quantity introduced by Razzaboni is recognized as an
invariant of the Razzaboni and duality transformations. Finally, Razzaboni surfaces are shown to
be amenable to the Sym-Tafel formula.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is by now well established that classical differential geometry constitutes a repository
of integrable classes of surfaces, i.e. classes of surfaces which are governed by integrable
nonlinear systems. Amongst those are surfaces of constant Gauf3ian or mean curvature,
isothermic and minimal surfaces, affine spheres and projective minimal surfaces. Thus,
distinguished geometers such as Bianchi, Calapso, Darboux, Demoulin, Guichard, Jonas,
Ribaucour and Weingarten investigated these classes in detail and, in particular, recorded
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associated Backlund transformations and linear representation§l{sesd references
therein). The natural coordinates on these surfaces are asymptotic, conjugate, conformal or
curvature coordinates.

Integrable surfaces on which geodesics and their orthogonal trajectories form canonical
coordinate systems seem to have attracted less attention by the geometers of the nineteenth
century. Such surfaces may be regarded as being swept out by integrable binormal motions
of inextensible curves. The most important surfaces of this kind are (Hasimoto) surfaces
which are generated by motions of a curve the local speed of which is proportional to the
local curvature of the curve. In 1906, Da R[@$ was led to these particular motions in con-
nection with an investigation of thin isolated vortex filaments traveling without stretching
in an incompressible fluid. Remarkably, some 70 years later, Hasifapttemonstrated
that the pair of coupled nonlinear equations set down by Da Rios may be combined to the
integrable nonlinear Schrodinger equation.

On use of a formulation with its origin in a kinematic study of hydrodynamics by Marris
and Passmaf], particular toroidal Hasimoto surfaces have recently been shown to form
nested constant pressure surfaces in steady hydrodynamics or, equivalently, magnetic sur-
faces in magnetohydrostatifs 6]. In [7], the same formalism has led to the discovery of
integrable surfaces which are spanned by a one-parameter family of geodesics of constant
curvature or torsion. Thus, in terms of the equivalent notion of binormal motions of curves,
the case of constant curvature has been related to an integrable extension of the Dym equa-
tion which may be linked to the modified modified Korteweg-de VriedKdV) equation
via a reciprocal transformation. A variant of the integrable reduced Maxwell-Bloch system
[8] which may be regarded as a generalization of the classical sine-Gordon and self-induced
transparency (SIT) equatiof@] has been shown to govern the binormal motion of curves
of constant torsion.

Curves of constant curvature or torsion constitute particular Bertrand curves. Bertrand
curves are well-studied classical curves and may be defined by their property that any
Bertrand curve shares its principal normals with another Bertrand curve, sometimes referred
to as Bertrand matfl0]. Accordingly, Bertrand mates represent particular examples of
offset curveq11] which are used in computer-aided design (CAD) and computer-aided
manufacture (CAM). The distance between a Bertrand curve and its mate measured along
the principal normal is known to be constant. This particular offset property may be used
to show that any surface which is spanned by a one-parameter family of geodesic Bertrand
curves of the same ‘kind’ admits a parallel surface of the same type. Moreover, application
of the Wahlquist—Estabrook prolongation techniqu2,13] to the underlying nonlinear
GauR—Mainardi—Codazzi equations reveals that these surfaces are integrable.

Itturns out that the above-mentioned class of surfaces which admits a geodesic embedding
of Bertrand curves was studied in detail by Amilcare Razzaboni who was an assistant to
Dini and a member of the Academy of Science of Bologna. In fact, in 1903, RazZaldpni
derived a Backlund transformation for this class of surfaces and set down a coupled Riccati
system which, in modern terminology, is nothing but a Lax pair for the underlying nonlinear
GauR—Mainardi—-Codazziequations. As Razzaboninoted, the latter may be castinto the form
of asingle nonlinear equation of fourth order. In connection with geodesic curves of constant
curvature or torsion, Razzaboni even refers to earlier ik published in 1898 on what
we may now call Razzaboni surfaces and also mentions a paper by[Fblihich deals
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with the constant torsion case. Thus, it is evident that the reduced Maxwell-Bloch system
and the (extended) Dym equation are implicitly contained in work of the nineteenth century.

The purpose of the present paper is twofold. On the one hand, it appears that Razzaboni’'s
publications are little known and it is therefore desirable to make them accessible to a
wider community. On the other hand, against the background of modern soliton theory,
novel interesting results have emerged. Thus, we begin with a review of the notion of
Bertrand curves and their offset curves. We then give the definition of Razzaboni surfaces
and show that there exist dual parallel Razzaboni surfaces which constitute the surface
analogues of the classical Bertrand mates. This ‘duality’ transformation seems to have
escaped Razzaboni’s attention. Moreover, we demonstrate that the natural geodesic coordi-
nate systems parametrizing the geodesic Bertrand curves and their orthogonal trajectories
on Razzaboni surfaces and their mates are related by a reciprocal transformation which
induces an invariance of the GauR—Mainardi—Codazzi equations. Reciprocal transforma-
tions have a long history. Accounts of reciprocal transformations and their application in
continuum mechanics may be found|[iti7,18] They also play an important role in the
classification of so-called systems of hydrodynamic ty@e-22]

In Section 4 we recall Razzaboni’'s Backlund transformation for Bertrand cuf2@p
which generalizes a result due to Demar{g2. The Razzaboni transformation constitutes
an extension to Bertrand curves of standard Bécklund transformations for curves of constant
curvature or torsion. The Backlund transformation for Razzaboni surfadgis then pres-
ented. Razzaboni’'s transformation is formulated in terms of a Frobenius system for a pseud-
opotentialp and an arbitrary parameterThis system is equivalent to a linear matrix system
which constitutes a linear representation in the sense of soliton the@gclion 5we es-
tablish that this linear system, in which the Backlund paranigéays the role of a ‘spectral
parameter’, encapsulates the complete class of Razzaboni surfaces via the Sym-Tafel for-
mula[25]. The latter is an important tool in the geometric study of integrable systems.

In the remainder ofection 4 we verify Razzaboni’s Backlund transformation by con-
structing the natural geodesic coordinate system on the transféaha Razzaboni surface
X. It turns out that the exact one-form which defines arc length of the Bertrand curves on
3’ may be integrated explicitly in terms gf. Thus, in order to determine the associated
geodesic coordinate system Brino further integration is required. Moreover, an analogous
statement may be made in the case of the Razzaboni Biat€his observation then leads
to the result that the Razzaboni and duality transformations commute. Itis also recorded that
the duality transformation may be recovered from the Razzaboni transformation in a formal
limit. A similar limit gives rise to a novel Backlund transformation for Razzaboni surfaces
for which the binormals to the Bertrand curves and their transforms are pointwise orthogo-
nal. Finally, Razzaboni’'s quantity which obeys the above-mentioned fourth-order equation
and in terms of which the fundamental forms of Razzaboni surfaces may be expressed is
shown to be an invariant of the Razzaboni and duality transformations.

2. Bertrand curves

In the present paper, we are concerned with curves and surfaces in Euclideak%pace
If acurverl : r = r(s) is parametrized in terms of arc length then the orthonormal triad
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(¢, n, b) consisting of the unittangent vectos r,, the principal normat and the binormal
b varies alongl™ according to the Serret—Frenet equatif2§:

t 0 k 0 t
n =] -« 0 =t n |, (2.1)
b 0O -t O b

N

where the quantities andt denote the curvature and torsion of the curve, respectively. An
offset curvel™ along the principal normal is defined by

r'=r+an, (2.2)

wherea constitutes a prescribed functionsofif one demands that the parent cuiveand
its offset curvel"* occur on an equal footing then the principal normal$tand I"* must
coincide, i.e.:

n* =n. (2.3)

This imposes constraints on the parent curve and the ‘distance’ functibinus, differen-
tiation of (2.2) yields

ri=1—-oax)t +an+ ath, (2.4)

which, by virtue ofr¥ - n* = 0, has the important implication that the offset curve is at a
constant distanae from the parent curve, i.e; = 0. The unittangent vectef is therefore
given by

_ A —ak)t +atb

5 ., D=+v(1—ak)?+ac2. (2.5)

t*
Further differentiation produces

1—oax (11— ax)x — ar? ot
tr = t — ) b. 2.6
s ( D X + D "+(Dl 26

The ¢- and b-components of the above are required to vanish sifie*. It is readily
verified that this requirement leads to the curvature—torsion relation:

ak + Bt =1, (2.7)

whereg constitutes a constant of integration. Curves for which there exist constants
B such that(2.7) holds are known as Bertrand curjéd®,11] Accordingly, the following
classical theorem holds.

Theorem 1 (The offset property of Bertrand curvesh curvel” admits an offset curve™
which has the same principal normal as the parent curve if and only i§ a Bertrand
curve i.e.

ak +pr =1 (2.8)
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for some constanis and 8. The offset curvé™* and its orthonormal triadz*, n*, b*) are
related tol” by

r*=r+an, t*:M, n*=n, b* = M. (2.9)
The curvaturetorsion and arc length of the offset curve are given by

K* = %, = m, ds* = /a2 + B2z ds (2.10)
so that the relation

a*k*+ Bt =1, o =-a, B*=p (2.11)

shows that the offset curve constitutes another Bertrand curve

Proof. The orthonormal framé2.9) 3 4 is obtained from(2.5) andb™ = ¢* x n*. The
relationst}, - n* = «* and by, - n* = —t* provide the expression®.10) » for the
curvature and torsion of the offset curve wjthy*/ds| = |r}| as given by(2.10k. O

To summarize, a Bertrand curve admits an offset curve at a constant distalargy its
principal normal. The offset curve of a Bertrand curve is sometimes called conjugate curve
or Bertrand mate. Due to the fact that a Bertrand curve is an offset at a distanitem
its own offset curve, a Bertrand curve and its mate may be regarded as dual to each other.
The simplest Bertrand curves and their duals are given by helices.

3. Thebinormal motion of Bertrand curves. Geodesic Bertrand curves on surfaces
3.1. Razzaboni surfaces

It is well known that a curved™ constitutes a geodesic on a surfagef and only if the
principal normal of the curve is (anti-)parallel to the normlto the surfacd26]. This
implies that if a surface¥ is spanned by a one-parameter family of geodesic Bertrand
curvesI'(b) with the same parametessand g then the Bertrand mates*(b) form a
parallel surfaceZ* on which they are likewise geodesics.

Definition 1 (Razzaboni surfaces). A surface is termed a Razzaboni surface if it is
spanned by a one-parameter family of geodesic Bertrand curves associated with two con-
stantsy andg.

Theorem 2 (Dual Razzaboni surfacespny Razzaboni surfacE with position vector
admits a parallefdual) Razzaboni surfac&* with position vector

(R) r*=r+an. (3.1)

In the casex = 0, the two Razzaboni surfaces coincide
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In fact, it is evident that if one demands that a one-parameter family of geodesics on a
surfaceX’ be mapped to geodesics on an offset surfaée r* = r + fN with N* = N
then, inthe generic case, the two surfaces are necessarily parallel and the geodesics constitute
Bertrand curves.Accordingly, there exists a complete analogy between classical Bertrand
curves and Razzaboni surfaces.

The casax = 0 corresponds to surfaces on which there exists a one-parameter family
of geodesics of constant torsion. It has been demonstratgd] that such surfaces are
governed by an integrable extended sine-Gordon system which constitutes a variant of the
reduced Maxwell-Bloch equatiori8]. Surfaces on which there exists a one-parameter
family of geodesics of constant curvature are likewise integr@flle The underlying
Gaul—Mainardi—Codazzi equations have been shown to reduce to an extended Dym equa-
tion which admits a reciprocal invariance. In fact, it emerges that the rel@idf);, which
links the arc lengths of a Bertrand curve and its conjugate, represents the ‘spatial part’ of
a reciprocal transformation which exists for the Gauf3—Mainardi—Codazzi equations of the
entire class of Razzaboni surfaces. The reciprocal transformation for the extended Dym
equation is retrieved in the particular case- 0.

3.2. The governing equations

If one chooses a one-parameter family of geodesics and their orthogonal trajectories as
the coordinate lines on a surfagethen, in terms of the associated geodesic coordinates
andb, the first fundamental form of the surface re{2i3)

dr? = ds? + g?db?. (3.2)

Here, the line$ = constant are the arc length parametrized geodesics and the lines
constant form the orthogonal parallels. Simge r;, = 0 and the principal normad of the
geodesics is orthogonal to the surface, the tangent vectors to the coordinate lines are given
by

ry =t, r, = gb, (3.3)

whereb denotes the usual binormal of the geodesics. One may therefore think of the surface
X as being generated by the motion of an inextensible curve which moves in binormal
direction at speed, wherein the coordinaté is identified with ‘time’. In particular, a
Razzaboni surface is generated by the binormal motion of a Bertrand curve which does
not change the constardsand 8. Here, it is emphasized that binormal motions are only
possible for inextensible curves, i.e. binormal motions automatically preserve arc length.

The variation of the orthonormal tridd, n, b) in s-direction is given by the Serret—Frenet
equations (2.1)Theb-dependence must be of the general form

t 0 u w t
=] —u 0 v n|. (3.4)
b -w —-v O b

1 Under the assumption that the two surfaces are parallel, this has been observed indeper{@@htly in
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The compatibility conditionsp = rps applied to(3.3)yields
un + wb = —tgn + ggb (3.5)

leading to the»-evolution

t 0 —T78 &s t
n =| g 0 v nl. (3.6)
b -g -—-v O b

b
The latter is compatible with the Serret—Freagtiations (2.1)f and only if x, 7, g andv
constitute a solution of the underdetermined system:

Kp = —2T8s — Ts&, T = Vs + Kgs, gss= T2g + K. (3.7)

The above system may be regarded as the GauR—Mainardi—Codazzi equations for generic
surfaces parametrized in terms of geodesic coordinates. For a given solution of this system,
the linear systenf2.1), (3.3) and (3.6is compatible and determines a surfateaip to its
position in space. If, in addition, the constraint

ak +pr =1 (3.8)

is imposed then the system is well determined and the sufa¢e guaranteed to be a
Razzaboni surface.

In the casex = 0, which corresponds to geodesics of constant torsion, we may set
B = t = 1 without loss of generality and obtain

Kp = —2gs, vy + Kkgs =0, gss= & + k. (3.9)
This integrable system may be regarded as an extension of the classical sine-Gordon equation
[7]:
wsh = SiNw (3.10)
and also constitutes a variant of the reduced Maxwell-Bloch equg@ipissingle equation
is obtained by means of the parametrizatios 6,, g = —6,/2, namely
Obss— Op
05

If B =0, corresponding to geodesics of constant curvature,dhenc = 1 without loss
of generality and we may sgt= /2. The governing system reduces to the integrable
evolution equatiof7]:

) + 0565 = 0. (3.11)
S

),
v=|(=5) -2+ 5], (3.12)
|:(T1/2 ss b2 |
which represents an extension of the well-known Dym equation
=)
m=\|—75 . (3.13)
<Tl/2 sss

It is noted that the extended Dym equation is generated by the purely binormal motion of
an inextensible curve moving at speed!/2.
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3.3. Dual Razzaboni surfaces. A reciprocal transformation

Itis evidentthatthe transition from Razzaboni surfaces to their duals induces an invariance
of the governingequations (3.7) and (3.8l turns out that the geodesic coordinatesh)
on X are related to the associated geodesic coordinate$*) on X* by a reciprocal
transformation. Thus, the following theorem, which constitutes an extension of the second
part of the classicalheorem 1is obtained.

Theorem 3 (A reciprocal transformation)The nonlinear system&.7) and (3.8) are
invariant under the reciprocal transformation

ds* = /a2 + 2r ds + ————(av + Brg + g) db, db* = db,
v Ny

o
. Bx—ar . 1 * _
T T T
pg* =B g*=ﬂ(av+g)_a2fg
1
v = \/ﬁ [,311 —atg — mwv + Btg +8):| . (3.14)

Proof. Itis readily verified that the differentialstiand d* defined by(3.14) » are exact
modulo(3.7) and (3.8)This guarantees the existence of the coordindtasds* and hence
the corresponding derivatives read

1
05+ = —==—=5"0s, Op = 0p

o
JoaZ+ p2r @2+ Bt
Differentiation of the dual position vect@8.1) then shows that
rao=1t", rp. = g*b", (3.16)

wheret* andb* as given by(2.9), 4 constitute the unit tangent and binormal to the Bertrand
curves onX*. Accordingly,s* represents arc length of the Bertrand curvessidnands*
parametrizes their orthogonal trajectories. The remaining quaritity n;, - b* is readily
calculated to bé3.14}%. O

(v + BTg + £)d5. (3.15)

In the case8 # 0, the reciprocal character of the above invariance encodé&d=nid is
illustrated by the compact relations

g\ (8 o
(5)=5(z). w5t o1

where the constant matrixis given by

ap?
/2 g | 1 5
S:‘XT—H3 . a2+ g2 (3.18)
2
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and

o 1

h:v——(t—i——)g. (3.19)
B B

Itis also interesting to note that in the case of surfaces which are spanned by a one-parameter

family of geodesic ‘generalized helicest,(8 — oo, k/t = constant, the analogue

of the above reciprocal transformation linearizes the associated Gaul3—Mainardi—Codazzi

equations.

4. Alinear representation and a Backlund transformation

In the derivation of a Backlund transformation for Razzaboni surfgicéls Razzaboni
made use of the results of an earlier paj23] in which he had generalized a Backlund
transformation for Bertrand curves due to Demaified$. Here, we first present the classical
theorems set down by Razzaboni and then derive further properties related to the dual
Razzaboni surfaces and reciprocal transformation discussed in the preceding. We essentially
adopt Razzaboni’s notation so that, in particular, the relation between the curvature and
torsion of the Bertrand curves is taken to be

: 1
kSino +tcoso =—, a >0, (4.1)
a

a =asino, B = acoso. 4.2)
4.1. Classical results

We begin with Razzaboni's Backlund transformation for Bertrand curves.

Theorem 4 (A Backlund transformation for Bertrand curvigs]). LetI" : r = r(s) be a
Bertrand curve parametrized in terms of arc length s. Tltlea position vector of another
one-parameter famikof Bertrand curved™ (k) is given by

(B) r =r+acosk(cososingt+ cosgn + sino sing b) (4.3)

witha’ = a,0’ = o, where the functios is a solution of the first-order differential equation

sino — cosk cos¢

. = K COSo — T Sin - .
s =k o+ a(coso + sink)

(4.4)

The Backlund transformation obeys the constant length propestyhe distance’ —r| =
a| cosk| between corresponding points dn and I"’(k) only depends on the Backlund
parameter k

2 Strictly speaking/™ depends ot and a constant of integration.
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It is observed in passing that the above Backlund transformation is not definked=for
—1/2 + 0. However, in the limit, we formally obtaifr’ — r| = a|sino| = |«| which is
precisely the distance between the original Bertrand curve and its dual. This constitutes a
first indication that Bertrand mates may be regarded as particular Backlund transforms of
their parent Bertrand curves. The surface analogue of the above theorem is the following
theorem.

Theorem 5 (A Backlund transformation for Razzaboni surfafbg]). LetX : r = r(s, b)
be a Razzaboni surface parametrized in terms of geodesic coordinatehen the posi-
tion vector of another one-parameter family of Razzaboni surfatés) is given by(4.3),
where the functio® is a solution of the compatible Frobenius syst@nd)and

sink sino + CcOSk COSo COS¢ sink coso — cosk Sino coS¢
v — T

sink sink
1+ sinkcoso — cosk Sino cos¢

a sink(coso + sink)

b = — 8

— cotk singg, — (4.5)

It is readily verified that the position vectef and the Frobenius syster.4) and (4.5)
are invariant undetk, ¢) — (r — k, ¢ + 7). Accordingly, modulo this invariance, the
Béacklund transformation for Razzaboni surfaces exhibits the afore-mentioned ‘singularity
atk = o — /2 and is likewise undefined fér= O corresponding t¢r’ — r| = a. In the
latter case, it will be shown that consideration of the formal limit- O leads to a Backlund
transformX’(0) which is given explicitly in terms of~.

The Frobenius systen{d.4) and (4.5pare of the form

¢s = f1C089 + f2, ¢p = g1COSP + g2 + g3Sing (4.6)

and is therefore equivalent to a pair of compatible Riccati equations. This implies, in turn,
that it is linearizable. Indeed, its general solution is given by

¢l
¢=2 arctanqp, 4.7)

where® = (¢, ¢%)T obeys the linear system
D = (fiX1+ f2X2) @, D) = (g1X1 + 82X2 + g3X3)P (4.8)

with the generators

L_tfo1 L_tf0 1 w_1f1 0 @9
1=2\1 o) 272\ -1 o) *=2\o0 -1 '

of the sl(2) Lie algebra. By construction, the linear sys{érB)is compatible modulo the
nonlinear Razzaboni system, i.e. the Gaul3—Mainardi—Coeggzitions (3.7) and (3.9n

the terminology of soliton theory, it constitutes a Lax pair for the Razzaboni system with
k playing the role of the ‘spectral’ parameter. $iection 5 it is established that this Lax

pair not only encapsulates the Razzaboni system via compatibility but also encodes the
Razzaboni surfaces themselves via the Sym-Tafel forf@éla
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4.2. A proof of Razzaboni's theorems. Novel results

For the proof of Razzaboni's theorems, it is required to show that the curvédtared
torsion ¢’ of the curvesl”’ as defined by(4.3) and (4.4)are indeed related by a linear
equation of the forn{4.1) and that these curves form geodesics on the surface$he
latter condition is equivalent to demanding that

¥y on' =0, (4.10)

which leads to the companion equati@h5) as shown by Razzaboni. Here, we choose a
different route and construct a geodesic coordinate sygtem’) on X’ which is such that
the curved™’ are given by’ = constant.

4.2.1. Curvature and torsion
Differentiation of the position vectar’ as given by(4.3)yields

1+ sinkcoso — cosk sino cosg

"= ft, = - , 4.11
re=/ ! coso + sink ( )
where the unit tangent to I"’ is given by
/o COSo + Sink — cosk cos¢ (sink sino + coOSk coso cos¢)t
N 1+ sink coso — cosk Sino Cos¢
COSk sing ( cosk cosgp — sin
- il S . o) n + COSk COS¢ b. (4.12)
1+ sinkcoso — cosk Sino COS¢
Further differentiation yields
1 T
I r_/ I
t,= fx'n’, K = Tsino Cotaﬁ, (4.13)
where the principal normad’ reads
_ COsk sing (sink sino + cosk coso cos¢)t
1+ sink coso — cosk Sino COSp
COSk COS¢ (COSk COS¢ — Sino) + Sink(coso + sink)
- " n
1+ sinkcoso — cosk Sino COS¢
—cosksing b. (4.14)

It is noted that forr = 0, i.e.t = 1/a, the above expression fef is still valid. In fact, in
this case, it simplifies to
sink — 1

"= 2——— =0). 4.1
K'=kKk+ oSk cosp (o0 =0 (4.15)

3 In Section 4 extensive use of the computer algebra prograsmLe has been made. Razzaboni's lengthy
calculations which were carried out be hand have thereby been verified.
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In order to derive the torsioft, it is convenient to make use of the binorndal= ¢ x n’
given by

COSk(cosk sino — sink coso COS¢ — cosqb)t

b = - .
1+ sinkcosc — cosk Sino cosg
cosk sing (coso + sink .
- i i - ) n + sink b, (4.16)
1+ sinkcoso — cosk sino coseg
whence
T
b; = —fr/n/, T/ = F (417)
Combination of4.13) and(4.17) yields
. 1
k' sino + v/ coso = = (4.18)
a

so that the curves”’ indeed constitute a family of Bertrand curves witando unchanged.

An important consequence of the preceding which may be regarded as an analogue of
a well-known property associated with the classical Backlund transformation for pseudo-
spherical surfacel®6,28]is stated below.

Corollary 1. The angle between the binormaisand »’ of Bertrand curves and their
Béacklund transforms is constaniz.
b - b = sink. (4.19)
4.2.2. Geodesic coordinates
The relation(4.11)implies that
sy = f =at +asinog;, (4.20)

wheres’ denotes arc length of the Bertrand cur¥&s On the other hand, frorf2.10), we
deduce that

sy =at =1—asinogslk=r/2 (4.21)

so that the arc lengths of the Backlund transfafthand the Bertrand mate* may be
expressed in terms of the arc lengtbf I" and the functions. Moreover, ifs* denotes arc
length of the Bertrand curves on the maié of the Razzaboni transford’ then

s =sisy =at' f = v _q1_ aSInaqu =1—asino¢}, (4.22)
‘ f f
where the functio™* is defined by
1 1+ sin(k+o0) ¢
*= | =dp =2 arctan| ——————tan— 4.23
¢ ,/f ¢ are an( coso + sink an2 ( )

Thus, the following theorem is suggested and indeed holds.
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Theorem 6 (Geodesic coordinate systems on Razzaboni transforms and Razzaboni mates).
The pairs(s’, b'), (s*, b*) and (s"*, b’*) defined by

s’ =s*+asincp, b =b,
s* =5 —asiNo@li=r/2, b* =b,

s¥ =5 — asine¢*, b*=hb, (4.24)
whereg* is defined as i4.23) constitute geodesic coordinates on the Razzaboni transform
X', the Razzaboni matE* and the mater’* of the Razzaboni transfor@’, respectively

Proof. The above theorem which, in conjunction witheorem 4implies Theorem Ss
proven by direct verification. In the case of the dual Razzaboni surface, it is readily verified
that &* coincides with the expression provided (3¢14),. Moreover, it has already been
demonstrated that/, = ¢'. Hence, in connection with the Razzaboni transfat it
remains to show that

r,=g'b (4.25)
for some functiorg’. It turns out thar, is indeed parallel t®’ with

/

g = % + a cotk coso (Singg, + COSo COSph), (4.26)

where the functioit is defined by(3.19) It is emphasized that even thouglis singular at
o = 1 /2, the quantitye’ is well defined for all values aof . Finally, it is required to verify
thatr’*,, is parallel tob’™*, where the position vector of the surfag&" is given by

rf)* =r'+asinon’ (4.27)
and the associated frame reads (2f9))

t"* = cosot' + sinob/, n*=n', b™* = —sinot’ + cosob'. (4.28)
A straightforward computation shows that this is indeed the case. O

4.2.3. A commutativity theorem
Itturns outthaty* represents a solution of the Frobenius syst@h?g and (4.5associated
with the Razzaboni mat&™. Accordingly, application ofTheorem 6to the surfacex™
produces
s¥ = s* fasine*¢* =5 —asinog* = s™*. (4.29)
In fact, a short calculation reveals that the surfaEésand X*' defined by(4.27)and
r¥ = r* 4 a cosk(coso sing*t* + cosp*n* — sino sing*b*), (4.30)

respectively, coincide. This is summarized in the following statement.

Theorem 7 (A commutation property) The operationd$3 and R commutei.e.:
BoR=RoB (4.31)

provided that the associated functiopsand¢* are related by(4.23)
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4.2.4. Aninvariance of the Razzaboni system

Razzaboni’s transformatiofi induces an invariance of the Razzaboni sys(8rv) and
(3.8). We have already established hBvacts on the variables 7, g ands, b. In principal,
the remaining quantity’ may be calculated from’ = n}, - b". However, the expression
so obtained appears to be of formidable complexity except whenO, in which case it
reduces to

cos2¢
sink

. cotk 1 .

v = <S|n2¢>+ >v+—cos¢g+ <— —1) sing cosp g;.  (4.32)
a sink
An alternative route to the derivation of makes use of the commutativity theorem. Thus,
the latter implies that the relation between the variagled’ andg* , #* is given by the
starred version of3.17) and (3.18)In particular, the relation
!/
¢ = & asino cosoh’ (4.33)
coso

obtains. Insertion of’ as given by the primed version (8.19) i.e.:

W =v — tano (' /, 4.34
v “ <r + a cos<7> g ( )
therefore, leads to
* 1
V=25 4 (tanar’ - — )g’, (4.35)
a Sino coso asino

whereg’ andg* are given by4.26)and its starred analogue, respectively. Once again, it is
noted that the above expression #0iis also valid forc = 7/2. Hence, we may conclude
this section with the following corollary.

Corollary 2 (An invariance of the Razzaboni systenTlhe Razzaboni systeff.7) and
(3.8)is invariant under the transformatiofx, 7, g, v, s, b) — («', 7/, g, V', s’, b’), where
the primed variables are given I§}.13)p, (4.17)p, (4.24) 2, (4.26) and (4.35Jor (4.32)
witha' =a,0' =o0o.

4.2.5. A scalar invariant
Razzaboni noticed that for non-vanishingndg the Gauf3B—Mainardi—Codazzi equations
may be written as a single equation for a poterttidefined by

do = B/t ds + a/Tgdb (4.36)
and associated with the ‘conservation law’
BV = (@/78)s. (4.37)

Indeed, the conservation law may be used to expremsd ¢ in terms ofd, while (3.7)
serves as a definition af. The remaining equatio(8.7) then constitutes a fourth-order
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equation for. In the case of the extended Dym equat{BriL2)corresponding t@ = 0,
the analogue of the above exact one-form reads

11 /1 1/1\%2 3 1
= — | —=(—= ———=) - = — 4.
weviar [ L(L) (L) T t]e (432
so that the extended Dym equation assumes the form

_{O;S} 35 1

0, = S — 4.39
b 202 45 " 492 (4.39)
with the Schwarzian derivative
fsss 3 (bss)”
;5 =—=——-| =) . 4.40
(0:5) = 22 2 (9) (4.40)

In [7], it has been shown that4fandr = —b/2 are taken as the independent variables then
s becomes a potential obeying

ds = e do + [e9(qop — 3¢2) — 377+ 3 e¥]dr, (4.41)

wherer = e~%, and the associated compatibility condition produces the modified modified
Korteweg-de Vries (fKdV) equation[29,30]

i = qoeo — 3q5 + 3g¢ cosh 2. (4.42)

Moreover, it has been demonstrated that the coordirtatasd: are preserved by (what
now turns out to be a particular case of) the Razzaboni transformiagmal the reciprocal
transformatioriR. Thus,0 regarded as a function of the geodesic coordinatesdb is an
invariant of these transformations. In fact, this property exists in the following general case.

Theorem 8 (A scalar invariant).The potentiab defined by the exact one-for#.36)is
preserved by the transformatiosand R.

The above theorem may be verified directly by merely using the expressions for the
transformed quantities obtained in the preceding sections. In the case of the duality trans-
formationR, it is required to show that

do* = B*Vrr ds* 4 a*VTrg* db* = db. (4.43)
In connection with Razzaboni’s transformatiBit is convenient to be aware of the relation
g =s;g — cotos), (4.44)
which readily delivers the identity
do’ = BV ds' + av/7’g' db’ = db. (4.45)

Whether the invariand is of any geometric significance is currently under investigation.
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4.3. The singular casds= o — 7/2andk =0

Razzaboni’'s Backlund transformatidhis not defined fotk = ¢ — 7/2 andk = 0
since the Frobenius systerfs4) and (4.5)s singular at these points. However, if formal
limits are taken then the duality transformati®may be recovered fror8 in the case
k = o — /2 and a novel Backlund transformation for Razzaboni surfaces may be defined
explicitly in the cas& = 0 corresponding to orthogonal binormalandd’. The validity of
the latter transformation may be verified directly without referring to the limit. A rigorous
treatment of both limiting procedures will be presented elsewhere.

4.3.1. Thecask=0 — /2
Careful inspection of4.4) shows that, in the case— o — /2, it is appropriate to set

k=0 — %n + €2, (4.46)
If we indicate the dependence @fon e by ¢ (¢) and use the notation

$o = ¢(0), $1 = ¢<(0) (4.47)
then, in the formal limit — 0, (4.4)reduces to

2 T
- %  sino i

provided that

$o = 0. (4.49)

It turns out that these conditions ¢ig and¢4 are consistent with the companion equation
(4.5). Moreover, ag — 0, the transformation law@.3), (4.12), (4.14) and (4.1®ecome

r=r*, t = t*, n = —n*, b = —b*, (4.50)
while, on use 0f4.48) the curvature and torsion simplify to
K = —K*, T =1" (4.51)

Thus, up to a change of orientation of the principal normal and binormal corresponding to
o' = a = —a*, the duality transformatio® is retrieved.

4.3.2. Thecask =0

According toCorollary 1, the angle between the binorniahnd its Backlund transform
b’ is constant. Sincé’ - b = sink, the binormals may even be orthogonal in the case of
Bertrand curves. However, the Backlund transformation for Razzaboni surfaces is a priori
undefined fok = 0. If we set

k=e (4.52)

and use the same notation as in the preceding then a necessary condition for the existence
of a formal limit is that the numerator of the right-hand sidg46) vanishes ag — 0.
This implies that

a coSo g Singg + a cos’ah cosgo + g = O. (4.53)
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Here, we exclude the cases= +x/2 which are covered by the preceding section. The
above condition may only be satisfied if

a?cos?og? + a?costoh? — g2 =2 >0 (4.54)
in which case its solution is given by

a coso (c cosoh + gds) a coso (cgy — cosogh)
; COS¢p =
2+ g2 2+ g2

singg = — . (4.55)

Differentiation with respect toshows thaf4.54)constitutes a firstintegral of the Razzaboni
system(3.7) and (3.8with
c=c() (4.56)

and, remarkablypg as defined by4.55)is indeed a particular solution of theevolution
(4.4)fore = 0.
In the formal limite — 0, theb-evolution(4.5)is readily shown to reduce to

5

oy = _azq;; B C:)ig _ ctanagi%_:-gcz Slnoh’ (4.57)
while the expressio.26)for g’ becomes

g =co1. (4.58)
One may now directly verify that

r, = b, (4.59)

wherer’, b’ are evaluated at = 0 and¢ = ¢q. Thus, the following theorem has been
established.

Theorem 9 (A Backlund transformation with the property - b = 0). If X constitutes
a Razzaboni surface with associated first intedfab4)... o then the position vector of
another Razzaboni surface’ is explicitly given by

r' =r + a(coso Singot + COSpon + Sino Singeb), (4.60)

wheregyg is defined by4.55) At corresponding pointshe binormalsh andd’ are orthog-
onal. The metric or®’ takes the form

dr’? = ds"? 4 22 db’? (4.61)
with the quantityp, defined by(4.57)

In the particular case = 0 associated with the generalized sine-Gordon sy$8#),
the above theorem has been formulated earli§rlinWe observe in passing that the angle
between the normals to a pseudospherical surface and its classical Backlund transform
[26,28]is likewise constant and may be chosen arbitrarily. In the case of orthogonal normals,
Bianchi's classical transformatidB1] is retrieved. However, Bianchi’s transformation is
not given explicitly and depends on a constant of integration.
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5. Application of the Sym—Tafel formula

In Section 4.1it has been pointed out that Razzaboni's Frobenius sysfém} and
(4.5)are equivalent to the linear systém8). We may now set aside the origin of the latter
and consider linear systems of the same form but regasas a (complex) matrix-valued
‘eigenfunction’ satisfying

@; = F(b)® = (f1X1+ f2X2) P, Dp =Gk)P = (g1X1 + g2X2 + g3X3)P
(5.1)

with the coefficients

cosk sino

= = k COSo — T Sin _,
11 a(coso + sink) fa=x o+ a(coso + sink)

. sino
= cotk [ —cosov + sinctg+ ———g |,
&1 < T a(CcoSso + smk)g)
1+ sinkcoso

= —Sinov — COSOTg — — - ,
82 & asink(coso + smk)g

g3 = — cotkg; (5.2)

and the sl(2) matrices

L_Lfo1 L_1fo 1 wL_if1 0 69
172\1 o) 272\ -1 o) *=2\0 -1/ '

Here, we have indicated the dependence on the (complex) pardmmster = F (k) and
G = G(k). By construction, this linear system encapsulates via compatibility the nonlinear
Razzaboni syster8.7) and (3.8)Since the latter constitutes the Gau3—Mainardi—Codazzi
equations for Razzaboni surfaces which, in turn, guarantee the compatibility of the linear
GaulR—Weingarten equations for the position veetaris natural to enquire as to whether
the Razzaboni surfaces themselves are encoded in the Lafdair

We begin with the observation that the specification

k = 2 arctan(iar) — i, (5.4)

wherel constitutes a real parameter, results in real coefficigntg, and purely imaginary
coefficientsf1, g1, g3 Thus, the matriceg” and G are now elements of the Lie algebra
su(2) since

Ff——r, 6'=-¢ (5.5)
and® may be taken to be in the associated Lie group SU(2) obeying

oo =1, deto =1 (5.6)
At L = 1/a,i.e.k — ioo, the Lax pair reduces to

Py = (—1e1 — Kke3)d, @), = (—vey + gsé2 + 18€3)D, (5.7)
where the matrice& are given by

€1 = C0Soe1 — Sinoey, ey = —e3, e3 = Sinoej + COSoer (5.8)
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with the standard generators

101 10 i 11 0 59
“=2i\1 0o)0 “T2i\i o) “®72lo -1 '

of su(2). Both sets of matrices ande; satisfy the so(3) commutator relations
lei, ex] = €ler. (5.10)

Moreover, the Gaul3—Weingartequations (2.1) and (3.6hay be cast precisely into the
form (5.7) with the substitutions®® — (¢, n, b)" andé; — [;, where the generatofs of
the Lie algebra so(3) are defined by

0 0 O 0 01 0 -1 0
h=]0 0 -1}, lpb=1 0 0 0}, I3=]1 0 O (5.11)
01 O -1 0 0 0 0 O

and satisfy the commutator relati@®.10) Thus, the Lax pai(5.1) evaluated at = 1/a
is but an su(2) version of the Gaul3—Weingarten equations for Razzaboni surfaces by virtue
of the su(2)—so(3) isomorphisén < ;.

Since® e SU(2), the quantityp ~1®, represents an element of su(2) and hence may be
decomposed according to

R=0"10,=r-e, e=|e |. (5.12)
e3
Thus, the matrix-valued functioR is naturally associated with a vector-valued function
r € R3 defined by(5.12)or equivalently
r=m(R,e), (5.13)
where the Killing—Cartan metric of su(2) is given by
m(p,q) = —=2Tr(pd), p,q € sU2). (5.14)

Itis noted thates, e2, e3} and{é1, 2, €3} constitute orthonormal bases of su(2) with respect
tom, i.e.:

m(e;, ex) = Sik. (5.15)

The relationR = @ 1@, is commonly referred to as the ‘Sym-Tafel formula’ and has been
widely employed in connection with the geometric study of both continuous and discrete
integrable systemid,25,32] The key idea is to identify the Lie algebra su(2) with and
regardr as the position vector of a surfage c R? for any fixeda.

In the current situation, it is by no means evident that the surfatetfined by the
Sym-Tafel formula constitute Razzaboni surfaces for any choice Biowever, it turns
out that ath = 1/a, Razzaboni surfaces are indeed retrieved. Thus, in the following, it is
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understood that all relevant quantities are evaluated=atl/a. The tangent vectors to the
coordinate lines orY' are readily obtained from the general relations

Ry, = F®, R, = 971G, @, (5.16)

which imply that the associated fundamental forms are independent of the eigenfuiction
and are entirely parametrized in terms of the matriEendG. In the present context, the
su(2) analogues of the tangent vectors are given by

Ry = @ 1610, Ry = g® 1é30. (5.17)
Since the quantities
T =0 10, N =& 160, B =0 10 (5.18)

form a right-handed orthonormal triad with respect to the meiridt emerges that this
triad is nothing but an su(2) analogue of tlien, b)-frame associated with the curves
b = constant and the induced metric assumes the ‘geodesic’ form

dr? = ds? + g2 db?. (5.19)
Moreover, differentiation of” and B produces
Ty = &N, By = —tN. (5.20)

Thus, we have established the important result that the position vector of any Razzaboni
surfaceX’ may be recovered and, in fact, constructed from the eigenfunétibg means
of the Sym—Tafel formul#5.12)evaluated at = 1/a.
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